MakeItFrom.com
Menu (ESC)

C86400 Bronze vs. AISI 301 Stainless Steel

C86400 bronze belongs to the copper alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86400 bronze and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
7.4 to 46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 470
590 to 1460
Tensile Strength: Yield (Proof), MPa 150
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
840
Melting Completion (Liquidus), °C 880
1420
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 88
16
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 48
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 110
130 to 2970
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
21 to 52
Strength to Weight: Bending, points 17
20 to 37
Thermal Diffusivity, mm2/s 29
4.2
Thermal Shock Resistance, points 16
12 to 31

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 56 to 62
0
Iron (Fe), % 0.4 to 2.0
70.7 to 78
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0.1 to 1.0
0 to 2.0
Nickel (Ni), % 0 to 1.0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 34 to 42
0
Residuals, % 0 to 1.0
0