MakeItFrom.com
Menu (ESC)

C86400 Bronze vs. ASTM A387 Grade 21L Class 1

C86400 bronze belongs to the copper alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86400 bronze and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 470
500
Tensile Strength: Yield (Proof), MPa 150
230

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
480
Melting Completion (Liquidus), °C 880
1470
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 88
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 22
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 48
23
Embodied Water, L/kg 330
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
84
Resilience: Unit (Modulus of Resilience), kJ/m3 110
140
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 29
11
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 56 to 62
0
Iron (Fe), % 0.4 to 2.0
94.4 to 96.1
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0.1 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 34 to 42
0
Residuals, % 0 to 1.0
0