MakeItFrom.com
Menu (ESC)

C86400 Bronze vs. EN 1.4310 Stainless Steel

C86400 bronze belongs to the copper alloys classification, while EN 1.4310 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86400 bronze and the bottom bar is EN 1.4310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
14 to 45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 470
730 to 900
Tensile Strength: Yield (Proof), MPa 150
260 to 570

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
910
Melting Completion (Liquidus), °C 880
1420
Melting Onset (Solidus), °C 860
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 88
15
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
14
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 48
42
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
110 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 110
170 to 830
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
26 to 32
Strength to Weight: Bending, points 17
23 to 27
Thermal Diffusivity, mm2/s 29
4.0
Thermal Shock Resistance, points 16
15 to 18

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 56 to 62
0
Iron (Fe), % 0.4 to 2.0
66.4 to 78
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0.1 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 1.0
6.0 to 9.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 34 to 42
0
Residuals, % 0 to 1.0
0