MakeItFrom.com
Menu (ESC)

C86400 Bronze vs. EN 1.5525 Steel

C86400 bronze belongs to the copper alloys classification, while EN 1.5525 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86400 bronze and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
11 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 470
440 to 1440
Tensile Strength: Yield (Proof), MPa 150
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 88
50
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 22
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 48
19
Embodied Water, L/kg 330
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 110
240 to 640
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
16 to 51
Strength to Weight: Bending, points 17
16 to 36
Thermal Diffusivity, mm2/s 29
13
Thermal Shock Resistance, points 16
13 to 42

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 56 to 62
0 to 0.25
Iron (Fe), % 0.4 to 2.0
97.7 to 98.9
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0.1 to 1.0
0.9 to 1.2
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 34 to 42
0
Residuals, % 0 to 1.0
0