MakeItFrom.com
Menu (ESC)

C86400 Bronze vs. S30815 Stainless Steel

C86400 bronze belongs to the copper alloys classification, while S30815 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C86400 bronze and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 470
680
Tensile Strength: Yield (Proof), MPa 150
350

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1020
Melting Completion (Liquidus), °C 880
1400
Melting Onset (Solidus), °C 860
1360
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 88
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
17
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 48
47
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
260
Resilience: Unit (Modulus of Resilience), kJ/m3 110
310
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
25
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 29
4.0
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 56 to 62
0
Iron (Fe), % 0.4 to 2.0
62.8 to 68.4
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0.1 to 1.0
0 to 0.8
Nickel (Ni), % 0 to 1.0
10 to 12
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.4 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 34 to 42
0
Residuals, % 0 to 1.0
0