MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. 2025 Aluminum

C86500 bronze belongs to the copper alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C86500 bronze and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 25
15
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 530
400
Tensile Strength: Yield (Proof), MPa 190
260

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 880
640
Melting Onset (Solidus), °C 860
520
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 86
150
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
40
Electrical Conductivity: Equal Weight (Specific), % IACS 25
120

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 2.8
7.9
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 330
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
55
Resilience: Unit (Modulus of Resilience), kJ/m3 180
450
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 20
46
Strength to Weight: Axial, points 19
37
Strength to Weight: Bending, points 18
40
Thermal Diffusivity, mm2/s 28
58
Thermal Shock Resistance, points 17
18

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
90.9 to 95.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 55 to 60
3.9 to 5.0
Iron (Fe), % 0.4 to 2.0
0 to 1.0
Lead (Pb), % 0 to 0.4
0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.1 to 1.5
0.4 to 1.2
Nickel (Ni), % 0 to 1.0
0
Silicon (Si), % 0
0.5 to 1.2
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 36 to 42
0 to 0.25
Residuals, % 0
0 to 0.15