MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. Nickel 242

C86500 bronze belongs to the copper alloys classification, while nickel 242 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is nickel 242.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 25
45
Poisson's Ratio 0.3
0.3
Shear Modulus, GPa 40
84
Tensile Strength: Ultimate (UTS), MPa 530
820
Tensile Strength: Yield (Proof), MPa 190
350

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
930
Melting Completion (Liquidus), °C 880
1380
Melting Onset (Solidus), °C 860
1290
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 86
11
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 25
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 2.8
14
Embodied Energy, MJ/kg 48
180
Embodied Water, L/kg 330
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
300
Resilience: Unit (Modulus of Resilience), kJ/m3 180
280
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 20
22
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 28
3.1
Thermal Shock Resistance, points 17
25

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0 to 0.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
7.0 to 9.0
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 55 to 60
0 to 0.5
Iron (Fe), % 0.4 to 2.0
0 to 2.0
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0 to 0.8
Molybdenum (Mo), % 0
24 to 26
Nickel (Ni), % 0 to 1.0
59.3 to 69
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0