MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. C14300 Copper

Both C86500 bronze and C14300 copper are copper alloys. They have 58% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is C14300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
2.0 to 42
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 530
220 to 460
Tensile Strength: Yield (Proof), MPa 190
76 to 430

Thermal Properties

Latent Heat of Fusion, J/g 170
210
Maximum Temperature: Mechanical, °C 120
220
Melting Completion (Liquidus), °C 880
1080
Melting Onset (Solidus), °C 860
1050
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 86
380
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
96
Electrical Conductivity: Equal Weight (Specific), % IACS 25
96

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 48
41
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
9.0 to 72
Resilience: Unit (Modulus of Resilience), kJ/m3 180
25 to 810
Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 19
6.8 to 14
Strength to Weight: Bending, points 18
9.1 to 15
Thermal Diffusivity, mm2/s 28
110
Thermal Shock Resistance, points 17
7.8 to 16

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0
Cadmium (Cd), % 0
0.050 to 0.15
Copper (Cu), % 55 to 60
99.9 to 99.95
Iron (Fe), % 0.4 to 2.0
0
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0
Nickel (Ni), % 0 to 1.0
0
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0