MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. C89320 Bronze

Both C86500 bronze and C89320 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 59% of their average alloy composition in common.

For each property being compared, the top bar is C86500 bronze and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
17
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 530
270
Tensile Strength: Yield (Proof), MPa 190
140

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 880
1050
Melting Onset (Solidus), °C 860
930
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 86
56
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
15
Electrical Conductivity: Equal Weight (Specific), % IACS 25
15

Otherwise Unclassified Properties

Base Metal Price, % relative 23
37
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 2.8
3.5
Embodied Energy, MJ/kg 48
56
Embodied Water, L/kg 330
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
38
Resilience: Unit (Modulus of Resilience), kJ/m3 180
93
Stiffness to Weight: Axial, points 7.4
6.8
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 19
8.5
Strength to Weight: Bending, points 18
10
Thermal Diffusivity, mm2/s 28
17
Thermal Shock Resistance, points 17
10

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Copper (Cu), % 55 to 60
87 to 91
Iron (Fe), % 0.4 to 2.0
0 to 0.2
Lead (Pb), % 0 to 0.4
0 to 0.090
Manganese (Mn), % 0.1 to 1.5
0
Nickel (Ni), % 0 to 1.0
0 to 1.0
Phosphorus (P), % 0
0 to 0.3
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 1.0
5.0 to 7.0
Zinc (Zn), % 36 to 42
0 to 1.0
Residuals, % 0
0 to 0.5