MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. C90200 Bronze

Both C86500 bronze and C90200 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 59% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
30
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 530
260
Tensile Strength: Yield (Proof), MPa 190
110

Thermal Properties

Latent Heat of Fusion, J/g 170
200
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 880
1050
Melting Onset (Solidus), °C 860
880
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 86
62
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
13
Electrical Conductivity: Equal Weight (Specific), % IACS 25
13

Otherwise Unclassified Properties

Base Metal Price, % relative 23
34
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 48
53
Embodied Water, L/kg 330
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 180
55
Stiffness to Weight: Axial, points 7.4
7.0
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 19
8.3
Strength to Weight: Bending, points 18
10
Thermal Diffusivity, mm2/s 28
19
Thermal Shock Resistance, points 17
9.5

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 55 to 60
91 to 94
Iron (Fe), % 0.4 to 2.0
0 to 0.2
Lead (Pb), % 0 to 0.4
0 to 0.3
Manganese (Mn), % 0.1 to 1.5
0
Nickel (Ni), % 0 to 1.0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 1.0
6.0 to 8.0
Zinc (Zn), % 36 to 42
0 to 0.5
Residuals, % 0
0 to 0.6