MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. C90500 Gun Metal

Both C86500 bronze and C90500 gun metal are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
20
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 530
320
Tensile Strength: Yield (Proof), MPa 190
160

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 880
1000
Melting Onset (Solidus), °C 860
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 86
75
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
11
Electrical Conductivity: Equal Weight (Specific), % IACS 25
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
35
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 48
59
Embodied Water, L/kg 330
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
54
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110
Stiffness to Weight: Axial, points 7.4
6.9
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 19
10
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 28
23
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 55 to 60
86 to 89
Iron (Fe), % 0.4 to 2.0
0 to 0.2
Lead (Pb), % 0 to 0.4
0 to 0.3
Manganese (Mn), % 0.1 to 1.5
0
Nickel (Ni), % 0 to 1.0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 1.0
9.0 to 11
Zinc (Zn), % 36 to 42
1.0 to 3.0
Residuals, % 0
0 to 0.3