MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. S15500 Stainless Steel

C86500 bronze belongs to the copper alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
6.8 to 16
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 530
890 to 1490
Tensile Strength: Yield (Proof), MPa 190
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
820
Melting Completion (Liquidus), °C 880
1430
Melting Onset (Solidus), °C 860
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 86
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 48
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
890 to 4460
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
32 to 53
Strength to Weight: Bending, points 18
26 to 37
Thermal Diffusivity, mm2/s 28
4.6
Thermal Shock Resistance, points 17
30 to 50

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 55 to 60
2.5 to 4.5
Iron (Fe), % 0.4 to 2.0
71.9 to 79.9
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0 to 1.0
Nickel (Ni), % 0 to 1.0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0