MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. S30415 Stainless Steel

C86500 bronze belongs to the copper alloys classification, while S30415 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is S30415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
45
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 530
670
Tensile Strength: Yield (Proof), MPa 190
330

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
940
Melting Completion (Liquidus), °C 880
1410
Melting Onset (Solidus), °C 860
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 86
21
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 48
43
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
250
Resilience: Unit (Modulus of Resilience), kJ/m3 180
280
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 28
5.6
Thermal Shock Resistance, points 17
15

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0.040 to 0.060
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 55 to 60
0
Iron (Fe), % 0.4 to 2.0
67.8 to 71.8
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0 to 0.8
Nickel (Ni), % 0 to 1.0
9.0 to 10
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0