MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. ACI-ASTM CD3MN Steel

C86700 bronze belongs to the copper alloys classification, while ACI-ASTM CD3MN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is ACI-ASTM CD3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
29
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 630
710
Tensile Strength: Yield (Proof), MPa 250
460

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
1060
Melting Completion (Liquidus), °C 880
1450
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 89
16
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
18
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.6
Embodied Energy, MJ/kg 49
50
Embodied Water, L/kg 340
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
180
Resilience: Unit (Modulus of Resilience), kJ/m3 290
530
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 28
4.3
Thermal Shock Resistance, points 21
20

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21 to 23.5
Copper (Cu), % 55 to 60
0 to 1.0
Iron (Fe), % 1.0 to 3.0
62.6 to 71.9
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 1.0
4.5 to 6.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 30 to 38
0
Residuals, % 0 to 1.0
0