MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. AISI 301 Stainless Steel

C86700 bronze belongs to the copper alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
7.4 to 46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 630
590 to 1460
Tensile Strength: Yield (Proof), MPa 250
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 130
840
Melting Completion (Liquidus), °C 880
1420
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 89
16
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 49
39
Embodied Water, L/kg 340
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 290
130 to 2970
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
21 to 52
Strength to Weight: Bending, points 21
20 to 37
Thermal Diffusivity, mm2/s 28
4.2
Thermal Shock Resistance, points 21
12 to 31

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 55 to 60
0
Iron (Fe), % 1.0 to 3.0
70.7 to 78
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0 to 2.0
Nickel (Ni), % 0 to 1.0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 30 to 38
0
Residuals, % 0 to 1.0
0