MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. ASTM A369 Grade FP2

C86700 bronze belongs to the copper alloys classification, while ASTM A369 grade FP2 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is ASTM A369 grade FP2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
20
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 630
430
Tensile Strength: Yield (Proof), MPa 250
240

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
420
Melting Completion (Liquidus), °C 880
1470
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 89
49
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.6
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.6
Embodied Energy, MJ/kg 49
20
Embodied Water, L/kg 340
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
75
Resilience: Unit (Modulus of Resilience), kJ/m3 290
150
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 28
13
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
0.5 to 0.81
Copper (Cu), % 55 to 60
0
Iron (Fe), % 1.0 to 3.0
97.4 to 98.6
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.1 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 30 to 38
0
Residuals, % 0 to 1.0
0