MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. SAE-AISI 4130 Steel

C86700 bronze belongs to the copper alloys classification, while SAE-AISI 4130 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is SAE-AISI 4130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
13 to 26
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 630
530 to 1040
Tensile Strength: Yield (Proof), MPa 250
440 to 980

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
420
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 89
43
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.5
Embodied Energy, MJ/kg 49
20
Embodied Water, L/kg 340
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
83 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 290
500 to 2550
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
19 to 37
Strength to Weight: Bending, points 21
19 to 29
Thermal Diffusivity, mm2/s 28
12
Thermal Shock Resistance, points 21
16 to 31

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 55 to 60
0
Iron (Fe), % 1.0 to 3.0
97.3 to 98.2
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0.4 to 0.6
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 30 to 38
0
Residuals, % 0 to 1.0
0