MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. C18700 Copper

Both C86700 bronze and C18700 copper are copper alloys. They have 59% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
9.0 to 9.6
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 630
290 to 330
Tensile Strength: Yield (Proof), MPa 250
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 880
1080
Melting Onset (Solidus), °C 860
950
Specific Heat Capacity, J/kg-K 400
380
Thermal Conductivity, W/m-K 89
380
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
98
Electrical Conductivity: Equal Weight (Specific), % IACS 19
99

Otherwise Unclassified Properties

Base Metal Price, % relative 23
30
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 290
240 to 280
Stiffness to Weight: Axial, points 7.5
7.1
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 22
9.0 to 10
Strength to Weight: Bending, points 21
11 to 12
Thermal Diffusivity, mm2/s 28
110
Thermal Shock Resistance, points 21
10 to 12

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Copper (Cu), % 55 to 60
98 to 99.2
Iron (Fe), % 1.0 to 3.0
0
Lead (Pb), % 0.5 to 1.5
0.8 to 1.5
Manganese (Mn), % 1.0 to 3.5
0
Nickel (Ni), % 0 to 1.0
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 30 to 38
0
Residuals, % 0
0 to 0.5