MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. C95300 Bronze

Both C86700 bronze and C95300 bronze are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
14 to 25
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 630
520 to 610
Tensile Strength: Yield (Proof), MPa 250
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 180
230
Maximum Temperature: Mechanical, °C 130
220
Melting Completion (Liquidus), °C 880
1050
Melting Onset (Solidus), °C 860
1040
Specific Heat Capacity, J/kg-K 400
440
Thermal Conductivity, W/m-K 89
63
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
13
Electrical Conductivity: Equal Weight (Specific), % IACS 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 2.9
3.1
Embodied Energy, MJ/kg 49
52
Embodied Water, L/kg 340
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 290
170 to 420
Stiffness to Weight: Axial, points 7.5
7.5
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 22
17 to 21
Strength to Weight: Bending, points 21
17 to 19
Thermal Diffusivity, mm2/s 28
17
Thermal Shock Resistance, points 21
19 to 22

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
9.0 to 11
Copper (Cu), % 55 to 60
86.5 to 90.2
Iron (Fe), % 1.0 to 3.0
0.8 to 1.5
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0
Nickel (Ni), % 0 to 1.0
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 30 to 38
0
Residuals, % 0
0 to 1.0