MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. S17600 Stainless Steel

C86700 bronze belongs to the copper alloys classification, while S17600 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
8.6 to 11
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 630
940 to 1490
Tensile Strength: Yield (Proof), MPa 250
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 130
890
Melting Completion (Liquidus), °C 880
1430
Melting Onset (Solidus), °C 860
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 89
15
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.9
Embodied Energy, MJ/kg 49
42
Embodied Water, L/kg 340
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 290
850 to 4390
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
34 to 54
Strength to Weight: Bending, points 21
28 to 37
Thermal Diffusivity, mm2/s 28
4.1
Thermal Shock Resistance, points 21
31 to 50

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0 to 0.4
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 55 to 60
0
Iron (Fe), % 1.0 to 3.0
71.3 to 77.6
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0 to 1.0
Nickel (Ni), % 0 to 1.0
6.0 to 7.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
0.4 to 1.2
Zinc (Zn), % 30 to 38
0
Residuals, % 0 to 1.0
0