MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. S32003 Stainless Steel

C86700 bronze belongs to the copper alloys classification, while S32003 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is S32003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
28
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 630
730
Tensile Strength: Yield (Proof), MPa 250
510

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 130
1010
Melting Completion (Liquidus), °C 880
1440
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 89
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
14
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.0
Embodied Energy, MJ/kg 49
42
Embodied Water, L/kg 340
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
180
Resilience: Unit (Modulus of Resilience), kJ/m3 290
660
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 28
4.0
Thermal Shock Resistance, points 21
21

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 22.5
Copper (Cu), % 55 to 60
0
Iron (Fe), % 1.0 to 3.0
68.2 to 75.9
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0 to 2.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 1.0
3.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 30 to 38
0
Residuals, % 0 to 1.0
0