MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. S35315 Stainless Steel

C86700 bronze belongs to the copper alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 630
740
Tensile Strength: Yield (Proof), MPa 250
300

Thermal Properties

Latent Heat of Fusion, J/g 180
330
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 880
1370
Melting Onset (Solidus), °C 860
1330
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 89
12
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
34
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.9
5.7
Embodied Energy, MJ/kg 49
81
Embodied Water, L/kg 340
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
270
Resilience: Unit (Modulus of Resilience), kJ/m3 290
230
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 28
3.1
Thermal Shock Resistance, points 21
17

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 55 to 60
0
Iron (Fe), % 1.0 to 3.0
33.6 to 40.6
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0 to 2.0
Nickel (Ni), % 0 to 1.0
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 30 to 38
0
Residuals, % 0 to 1.0
0