MakeItFrom.com
Menu (ESC)

C86800 Bronze vs. AISI 301LN Stainless Steel

C86800 bronze belongs to the copper alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C86800 bronze and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
23 to 51
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 570
630 to 1060
Tensile Strength: Yield (Proof), MPa 260
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 140
890
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 880
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 51
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 310
180 to 1520
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 20
22 to 38
Strength to Weight: Bending, points 19
21 to 30
Thermal Shock Resistance, points 18
14 to 24

Alloy Composition

Aluminum (Al), % 0 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 53.5 to 57
0
Iron (Fe), % 1.0 to 2.5
70.7 to 77.9
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 4.0
0 to 2.0
Nickel (Ni), % 2.5 to 4.0
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 28.3 to 40.5
0
Residuals, % 0 to 1.0
0