MakeItFrom.com
Menu (ESC)

C86800 Bronze vs. C55181 Copper

Both C86800 bronze and C55181 copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 55% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C86800 bronze and the bottom bar is C55181 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 570
200

Thermal Properties

Latent Heat of Fusion, J/g 180
190
Maximum Temperature: Mechanical, °C 140
200
Melting Completion (Liquidus), °C 900
790
Melting Onset (Solidus), °C 880
710
Specific Heat Capacity, J/kg-K 400
410
Thermal Expansion, µm/m-K 20
16

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 3.0
2.4
Embodied Energy, MJ/kg 51
38
Embodied Water, L/kg 320
290

Common Calculations

Stiffness to Weight: Axial, points 7.7
7.0
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 20
6.5
Strength to Weight: Bending, points 19
8.9
Thermal Shock Resistance, points 18
8.2

Alloy Composition

Aluminum (Al), % 0 to 2.0
0
Copper (Cu), % 53.5 to 57
92.4 to 93
Iron (Fe), % 1.0 to 2.5
0
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 4.0
0
Nickel (Ni), % 2.5 to 4.0
0
Phosphorus (P), % 0
7.0 to 7.5
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 28.3 to 40.5
0
Residuals, % 0
0 to 0.15