MakeItFrom.com
Menu (ESC)

C86800 Bronze vs. C62300 Bronze

Both C86800 bronze and C62300 bronze are copper alloys. They have 59% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86800 bronze and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22
18 to 32
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 570
570 to 630
Tensile Strength: Yield (Proof), MPa 260
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 180
230
Maximum Temperature: Mechanical, °C 140
220
Melting Completion (Liquidus), °C 900
1050
Melting Onset (Solidus), °C 880
1040
Specific Heat Capacity, J/kg-K 400
440
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 10
13

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 51
52
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 310
240 to 430
Stiffness to Weight: Axial, points 7.7
7.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 20
19 to 21
Strength to Weight: Bending, points 19
18 to 20
Thermal Shock Resistance, points 18
20 to 22

Alloy Composition

Aluminum (Al), % 0 to 2.0
8.5 to 10
Copper (Cu), % 53.5 to 57
83.2 to 89.5
Iron (Fe), % 1.0 to 2.5
2.0 to 4.0
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 4.0
0 to 0.5
Nickel (Ni), % 2.5 to 4.0
0 to 1.0
Silicon (Si), % 0
0 to 0.25
Tin (Sn), % 0 to 1.0
0 to 0.6
Zinc (Zn), % 28.3 to 40.5
0
Residuals, % 0
0 to 0.5