MakeItFrom.com
Menu (ESC)

C87200 Bronze vs. S35115 Stainless Steel

C87200 bronze belongs to the copper alloys classification, while S35115 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87200 bronze and the bottom bar is S35115 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 380
670
Tensile Strength: Yield (Proof), MPa 170
310

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 970
1420
Melting Onset (Solidus), °C 860
1370
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
26
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.8
Embodied Energy, MJ/kg 44
67
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
250
Resilience: Unit (Modulus of Resilience), kJ/m3 130
240
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
24
Strength to Weight: Bending, points 14
22
Thermal Diffusivity, mm2/s 8.0
3.9
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 89 to 99
0
Iron (Fe), % 0 to 2.5
47.6 to 55.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.5
0 to 0.045
Silicon (Si), % 1.0 to 5.0
0.5 to 1.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 0 to 5.0
0