MakeItFrom.com
Menu (ESC)

C87200 Bronze vs. S44537 Stainless Steel

C87200 bronze belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87200 bronze and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 380
510
Tensile Strength: Yield (Proof), MPa 170
360

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 970
1480
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 44
50
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
95
Resilience: Unit (Modulus of Resilience), kJ/m3 130
320
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
18
Strength to Weight: Bending, points 14
18
Thermal Diffusivity, mm2/s 8.0
5.6
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0 to 1.5
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 89 to 99
0 to 0.5
Iron (Fe), % 0 to 2.5
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 1.5
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.5
0 to 0.050
Silicon (Si), % 1.0 to 5.0
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 5.0
0