MakeItFrom.com
Menu (ESC)

C87400 Brass vs. AISI 316L Stainless Steel

C87400 brass belongs to the copper alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
9.0 to 50
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 390
530 to 1160
Tensile Strength: Yield (Proof), MPa 160
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 920
1400
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
19
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 44
53
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 120
93 to 1880
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
19 to 41
Strength to Weight: Bending, points 14
18 to 31
Thermal Diffusivity, mm2/s 8.3
4.1
Thermal Shock Resistance, points 14
12 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 79 to 85.5
0
Iron (Fe), % 0
62 to 72
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 2.5 to 4.0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0