MakeItFrom.com
Menu (ESC)

C87400 Brass vs. AISI 436 Stainless Steel

C87400 brass belongs to the copper alloys classification, while AISI 436 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
25
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 390
500
Tensile Strength: Yield (Proof), MPa 160
270

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
38
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
190
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
18
Strength to Weight: Bending, points 14
18
Thermal Diffusivity, mm2/s 8.3
6.7
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 79 to 85.5
0
Iron (Fe), % 0
77.8 to 83.3
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Niobium (Nb), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 4.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0