MakeItFrom.com
Menu (ESC)

C87400 Brass vs. EN 1.4439 Stainless Steel

C87400 brass belongs to the copper alloys classification, while EN 1.4439 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is EN 1.4439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 390
680
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 28
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
22
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.5
Embodied Energy, MJ/kg 44
61
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120
240
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
24
Strength to Weight: Bending, points 14
22
Thermal Diffusivity, mm2/s 8.3
3.8
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 79 to 85.5
0
Iron (Fe), % 0
58.7 to 66.9
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
12.5 to 14.5
Nitrogen (N), % 0
0.12 to 0.22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 2.5 to 4.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0