MakeItFrom.com
Menu (ESC)

C87400 Brass vs. EN 1.4520 Stainless Steel

C87400 brass belongs to the copper alloys classification, while EN 1.4520 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is EN 1.4520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
26
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 390
480
Tensile Strength: Yield (Proof), MPa 160
220

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
20
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 27
8.5
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 44
32
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
100
Resilience: Unit (Modulus of Resilience), kJ/m3 120
120
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
17
Strength to Weight: Bending, points 14
18
Thermal Diffusivity, mm2/s 8.3
5.4
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 79 to 85.5
0
Iron (Fe), % 0
80.1 to 83.9
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 4.0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.8
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0