MakeItFrom.com
Menu (ESC)

C87400 Brass vs. Grade CW6MC Nickel

C87400 brass belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 390
540
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 920
1480
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 400
440
Thermal Conductivity, W/m-K 28
11
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
80
Density, g/cm3 8.3
8.6
Embodied Carbon, kg CO2/kg material 2.7
14
Embodied Energy, MJ/kg 44
200
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
130
Resilience: Unit (Modulus of Resilience), kJ/m3 120
240
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 13
18
Strength to Weight: Bending, points 14
17
Thermal Diffusivity, mm2/s 8.3
2.8
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 79 to 85.5
0
Iron (Fe), % 0
0 to 5.0
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 2.5 to 4.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0