MakeItFrom.com
Menu (ESC)

C87400 Brass vs. S44535 Stainless Steel

C87400 brass belongs to the copper alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
28
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 390
450
Tensile Strength: Yield (Proof), MPa 160
290

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 820
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 27
11
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 44
34
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
200
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
16
Strength to Weight: Bending, points 14
17
Thermal Diffusivity, mm2/s 8.3
5.6
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0 to 0.8
0 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 79 to 85.5
0 to 0.5
Iron (Fe), % 0
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 2.5 to 4.0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0