MakeItFrom.com
Menu (ESC)

C87400 Brass vs. S44537 Stainless Steel

C87400 brass belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
21
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 390
510
Tensile Strength: Yield (Proof), MPa 160
360

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 920
1480
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 28
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 27
19
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 44
50
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
95
Resilience: Unit (Modulus of Resilience), kJ/m3 120
320
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
18
Strength to Weight: Bending, points 14
18
Thermal Diffusivity, mm2/s 8.3
5.6
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0 to 0.8
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 79 to 85.5
0 to 0.5
Iron (Fe), % 0
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 2.5 to 4.0
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0