MakeItFrom.com
Menu (ESC)

C87500 Brass vs. 707.0 Aluminum

C87500 brass belongs to the copper alloys classification, while 707.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C87500 brass and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 18
1.7 to 3.4
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 460
270 to 300
Tensile Strength: Yield (Proof), MPa 190
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 920
630
Melting Onset (Solidus), °C 820
600
Specific Heat Capacity, J/kg-K 410
880
Thermal Conductivity, W/m-K 28
150
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
37
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 300
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 160
210 to 430
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 16
26 to 29
Strength to Weight: Bending, points 16
32 to 34
Thermal Diffusivity, mm2/s 8.3
58
Thermal Shock Resistance, points 17
12 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.5
90.5 to 93.6
Chromium (Cr), % 0
0.2 to 0.4
Copper (Cu), % 79 to 85
0 to 0.2
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0 to 0.5
0
Magnesium (Mg), % 0
1.8 to 2.4
Manganese (Mn), % 0
0.4 to 0.6
Silicon (Si), % 3.0 to 5.0
0 to 0.2
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 12 to 16
4.0 to 4.5
Residuals, % 0
0 to 0.15