MakeItFrom.com
Menu (ESC)

C87500 Brass vs. ACI-ASTM CK35MN Steel

C87500 brass belongs to the copper alloys classification, while ACI-ASTM CK35MN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87500 brass and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 18
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
81
Tensile Strength: Ultimate (UTS), MPa 460
650
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 27
31
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.9
Embodied Energy, MJ/kg 44
81
Embodied Water, L/kg 300
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
210
Resilience: Unit (Modulus of Resilience), kJ/m3 160
240
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 8.3
3.3
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 79 to 85
0 to 0.4
Iron (Fe), % 0
43.4 to 51.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0
20 to 22
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 3.0 to 5.0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0