MakeItFrom.com
Menu (ESC)

C87500 Brass vs. EN 1.5414 Steel

C87500 brass belongs to the copper alloys classification, while EN 1.5414 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87500 brass and the bottom bar is EN 1.5414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 460
550 to 580
Tensile Strength: Yield (Proof), MPa 190
350 to 380

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 920
1470
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
2.6
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 44
21
Embodied Water, L/kg 300
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
320 to 370
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
19 to 20
Strength to Weight: Bending, points 16
19 to 20
Thermal Diffusivity, mm2/s 8.3
12
Thermal Shock Resistance, points 17
16 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 79 to 85
0 to 0.3
Iron (Fe), % 0
96.4 to 98.7
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0.9 to 1.5
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 3.0 to 5.0
0 to 0.4
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0