MakeItFrom.com
Menu (ESC)

C87500 Brass vs. Grade C-5 Titanium

C87500 brass belongs to the copper alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87500 brass and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 18
6.7
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 460
1000
Tensile Strength: Yield (Proof), MPa 190
940

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 920
1610
Melting Onset (Solidus), °C 820
1560
Specific Heat Capacity, J/kg-K 410
560
Thermal Conductivity, W/m-K 28
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 27
36
Density, g/cm3 8.3
4.4
Embodied Carbon, kg CO2/kg material 2.7
38
Embodied Energy, MJ/kg 44
610
Embodied Water, L/kg 300
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
66
Resilience: Unit (Modulus of Resilience), kJ/m3 160
4200
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 16
63
Strength to Weight: Bending, points 16
50
Thermal Diffusivity, mm2/s 8.3
2.9
Thermal Shock Resistance, points 17
71

Alloy Composition

Aluminum (Al), % 0 to 0.5
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 79 to 85
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0 to 0.5
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 3.0 to 5.0
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 12 to 16
0
Residuals, % 0
0 to 0.4