MakeItFrom.com
Menu (ESC)

C87500 Brass vs. S20161 Stainless Steel

C87500 brass belongs to the copper alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87500 brass and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 460
980
Tensile Strength: Yield (Proof), MPa 190
390

Thermal Properties

Latent Heat of Fusion, J/g 260
330
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 920
1380
Melting Onset (Solidus), °C 820
1330
Specific Heat Capacity, J/kg-K 410
490
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 8.3
7.5
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
360
Resilience: Unit (Modulus of Resilience), kJ/m3 160
390
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 16
36
Strength to Weight: Bending, points 16
29
Thermal Diffusivity, mm2/s 8.3
4.0
Thermal Shock Resistance, points 17
22

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 79 to 85
0
Iron (Fe), % 0
65.6 to 73.9
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.0 to 5.0
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0