MakeItFrom.com
Menu (ESC)

C87500 Brass vs. S20431 Stainless Steel

C87500 brass belongs to the copper alloys classification, while S20431 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87500 brass and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 460
710
Tensile Strength: Yield (Proof), MPa 190
350

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 920
1400
Melting Onset (Solidus), °C 820
1360
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 44
36
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
270
Resilience: Unit (Modulus of Resilience), kJ/m3 160
310
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
25
Strength to Weight: Bending, points 16
23
Thermal Diffusivity, mm2/s 8.3
4.0
Thermal Shock Resistance, points 17
15

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 79 to 85
1.5 to 3.5
Iron (Fe), % 0
66.1 to 74.4
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
5.0 to 7.0
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 3.0 to 5.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0