MakeItFrom.com
Menu (ESC)

C87600 Bronze vs. AISI 304L Stainless Steel

C87600 bronze belongs to the copper alloys classification, while AISI 304L stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87600 bronze and the bottom bar is AISI 304L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
6.7 to 46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 470
540 to 1160
Tensile Strength: Yield (Proof), MPa 230
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Mechanical, °C 190
540
Melting Completion (Liquidus), °C 970
1450
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
16
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 43
44
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
71 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 240
92 to 1900
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
19 to 41
Strength to Weight: Bending, points 16
19 to 31
Thermal Diffusivity, mm2/s 8.1
4.2
Thermal Shock Resistance, points 17
12 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 88 to 92.5
0
Iron (Fe), % 0
65 to 74
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 3.5 to 5.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 4.0 to 7.0
0
Residuals, % 0 to 0.5
0