MakeItFrom.com
Menu (ESC)

C87600 Bronze vs. EN 1.4913 Stainless Steel

C87600 bronze belongs to the copper alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87600 bronze and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
14 to 22
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 470
870 to 980
Tensile Strength: Yield (Proof), MPa 230
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Mechanical, °C 190
700
Melting Completion (Liquidus), °C 970
1460
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
24
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 300
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 240
600 to 1860
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
31 to 35
Strength to Weight: Bending, points 16
26 to 28
Thermal Diffusivity, mm2/s 8.1
6.5
Thermal Shock Resistance, points 17
31 to 34

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 88 to 92.5
0
Iron (Fe), % 0
84.5 to 88.3
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 3.5 to 5.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 4.0 to 7.0
0
Residuals, % 0 to 0.5
0