MakeItFrom.com
Menu (ESC)

C87600 Bronze vs. EN AC-48100 Aluminum

C87600 bronze belongs to the copper alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C87600 bronze and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
76
Elongation at Break, % 18
1.1
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
29
Tensile Strength: Ultimate (UTS), MPa 470
240 to 330
Tensile Strength: Yield (Proof), MPa 230
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 280
640
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 970
580
Melting Onset (Solidus), °C 860
470
Specific Heat Capacity, J/kg-K 410
880
Thermal Conductivity, W/m-K 28
130
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
87

Otherwise Unclassified Properties

Base Metal Price, % relative 29
11
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 2.7
7.3
Embodied Energy, MJ/kg 43
130
Embodied Water, L/kg 300
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 240
250 to 580
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 16
24 to 33
Strength to Weight: Bending, points 16
31 to 38
Thermal Diffusivity, mm2/s 8.1
55
Thermal Shock Resistance, points 17
11 to 16

Alloy Composition

Aluminum (Al), % 0
72.1 to 79.8
Copper (Cu), % 88 to 92.5
4.0 to 5.0
Iron (Fe), % 0
0 to 1.3
Lead (Pb), % 0 to 0.5
0
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 3.5 to 5.5
16 to 18
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 4.0 to 7.0
0 to 1.5
Residuals, % 0
0 to 0.25