MakeItFrom.com
Menu (ESC)

C87600 Bronze vs. Titanium 4-4-2

C87600 bronze belongs to the copper alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87600 bronze and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 18
10
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 470
1150 to 1250
Tensile Strength: Yield (Proof), MPa 230
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 190
310
Melting Completion (Liquidus), °C 970
1610
Melting Onset (Solidus), °C 860
1560
Specific Heat Capacity, J/kg-K 410
540
Thermal Conductivity, W/m-K 28
6.7
Thermal Expansion, µm/m-K 17
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
39
Density, g/cm3 8.5
4.7
Embodied Carbon, kg CO2/kg material 2.7
30
Embodied Energy, MJ/kg 43
480
Embodied Water, L/kg 300
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 240
4700 to 5160
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
34
Strength to Weight: Axial, points 16
68 to 74
Strength to Weight: Bending, points 16
52 to 55
Thermal Diffusivity, mm2/s 8.1
2.6
Thermal Shock Resistance, points 17
86 to 93

Alloy Composition

Aluminum (Al), % 0
3.0 to 5.0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 88 to 92.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0 to 0.5
0
Molybdenum (Mo), % 0
3.0 to 5.0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 3.5 to 5.5
0.3 to 0.7
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
85.8 to 92.2
Zinc (Zn), % 4.0 to 7.0
0
Residuals, % 0
0 to 0.4