MakeItFrom.com
Menu (ESC)

C87610 Bronze vs. AISI 201LN Stainless Steel

C87610 bronze belongs to the copper alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87610 bronze and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
25 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 350
740 to 1060
Tensile Strength: Yield (Proof), MPa 140
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 190
880
Melting Completion (Liquidus), °C 970
1410
Melting Onset (Solidus), °C 820
1370
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 43
38
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 88
310 to 1520
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
27 to 38
Strength to Weight: Bending, points 13
24 to 30
Thermal Diffusivity, mm2/s 8.1
4.0
Thermal Shock Resistance, points 13
16 to 23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 90 to 94
0 to 1.0
Iron (Fe), % 0 to 0.2
67.9 to 73.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.25
6.4 to 7.5
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 3.0 to 5.0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.5
0