MakeItFrom.com
Menu (ESC)

C87610 Bronze vs. AISI 445 Stainless Steel

C87610 bronze belongs to the copper alloys classification, while AISI 445 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87610 bronze and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 350
480
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Mechanical, °C 190
950
Melting Completion (Liquidus), °C 970
1440
Melting Onset (Solidus), °C 820
1390
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.1
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 43
38
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
98
Resilience: Unit (Modulus of Resilience), kJ/m3 88
140
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
17
Strength to Weight: Bending, points 13
18
Thermal Diffusivity, mm2/s 8.1
5.6
Thermal Shock Resistance, points 13
16

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 90 to 94
0.3 to 0.6
Iron (Fe), % 0 to 0.2
74.9 to 80.7
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.0 to 5.0
0 to 1.0
Sulfur (S), % 0
0 to 0.012
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.5
0