MakeItFrom.com
Menu (ESC)

C87610 Bronze vs. ASTM A229 Spring Steel

C87610 bronze belongs to the copper alloys classification, while ASTM A229 spring steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87610 bronze and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Tensile Strength: Ultimate (UTS), MPa 350
1690 to 1890
Tensile Strength: Yield (Proof), MPa 140
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 970
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 88
3260 to 4080
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11
60 to 67
Strength to Weight: Bending, points 13
40 to 43
Thermal Diffusivity, mm2/s 8.1
14
Thermal Shock Resistance, points 13
54 to 60

Alloy Composition

Carbon (C), % 0
0.55 to 0.85
Copper (Cu), % 90 to 94
0
Iron (Fe), % 0 to 0.2
97.5 to 99
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.25
0.3 to 1.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.0 to 5.0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.5
0