MakeItFrom.com
Menu (ESC)

C87610 Bronze vs. C36200 Brass

Both C87610 bronze and C36200 brass are copper alloys. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87610 bronze and the bottom bar is C36200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 22
20 to 53
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
39
Tensile Strength: Ultimate (UTS), MPa 350
340 to 420
Tensile Strength: Yield (Proof), MPa 140
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 970
900
Melting Onset (Solidus), °C 820
890
Specific Heat Capacity, J/kg-K 410
380
Thermal Conductivity, W/m-K 28
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
28

Otherwise Unclassified Properties

Base Metal Price, % relative 29
23
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 43
45
Embodied Water, L/kg 300
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
74 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 88
89 to 630
Stiffness to Weight: Axial, points 7.4
6.9
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11
11 to 14
Strength to Weight: Bending, points 13
13 to 15
Thermal Diffusivity, mm2/s 8.1
37
Thermal Shock Resistance, points 13
11 to 14

Alloy Composition

Copper (Cu), % 90 to 94
60 to 63
Iron (Fe), % 0 to 0.2
0 to 0.15
Lead (Pb), % 0 to 0.2
3.5 to 4.5
Manganese (Mn), % 0 to 0.25
0
Silicon (Si), % 3.0 to 5.0
0
Zinc (Zn), % 3.0 to 5.0
32.4 to 36.5
Residuals, % 0 to 0.5
0