MakeItFrom.com
Menu (ESC)

C87610 Bronze vs. C90300 Bronze

Both C87610 bronze and C90300 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 92% of their average alloy composition in common.

For each property being compared, the top bar is C87610 bronze and the bottom bar is C90300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 350
330
Tensile Strength: Yield (Proof), MPa 140
150

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 970
1000
Melting Onset (Solidus), °C 820
850
Specific Heat Capacity, J/kg-K 410
370
Thermal Conductivity, W/m-K 28
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.1
12
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
33
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 43
56
Embodied Water, L/kg 300
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
59
Resilience: Unit (Modulus of Resilience), kJ/m3 88
110
Stiffness to Weight: Axial, points 7.4
7.0
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 11
11
Strength to Weight: Bending, points 13
12
Thermal Diffusivity, mm2/s 8.1
23
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 90 to 94
86 to 89
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0 to 0.2
0 to 0.3
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 3.0 to 5.0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Zinc (Zn), % 3.0 to 5.0
3.0 to 5.0
Residuals, % 0
0 to 0.6