MakeItFrom.com
Menu (ESC)

C87700 Bronze vs. EN 1.0303 Steel

C87700 bronze belongs to the copper alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87700 bronze and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.6
12 to 25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 300
290 to 410
Tensile Strength: Yield (Proof), MPa 120
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 980
1470
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 120
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 48
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 64
110 to 270
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
10 to 15
Strength to Weight: Bending, points 12
12 to 16
Thermal Diffusivity, mm2/s 34
14
Thermal Shock Resistance, points 11
9.2 to 13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0.020 to 0.060
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.5
99.335 to 99.71
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.8
0.25 to 0.4
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.15
0 to 0.020
Silicon (Si), % 2.5 to 3.5
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 2.0
0
Zinc (Zn), % 7.0 to 9.0
0
Residuals, % 0 to 0.8
0